John Vlachopoulos, Fundamentals of Fluid Mechanics Chem. Eng., McMaster University, Hamilton, ON, Canada (First Edition 1984, revised internet edition (2016), www.polydynamics.com)

This 808 page undergraduate-graduate textbook is available for downloading from the LIBGEN website, which has over one million sci-tech books free for downloading. It is currently operating at **libgen.io**, however, due to actions from publishers, it may change the **.io** domain. The new domain for Library Genesis (LIBGEN) will likely appear in Wikipedia.

CONTENTS

1.	FUN	NDAMENTAL CONCEPTS $(1/1 - 1/20)$	1/1
	1.1	Introduction	1/1
	1.2	The Equation of State	1/2
	1.3	Viscosity	1/4
	1.4	Non-Newtonian Fluids	1/11
	1.5	Surface Tension	1/14
	1.6	The No-Slip Condition	1/14
	1.7	Vapor Pressure of Liquids	1/16
	1.8	Compressibility of Fluids	1/16
	1.9	Laminar Versus Turbulent Flow	1/17

2. FLUIDS STATICS (2/1 - 2/28)

2.1	Pressure Distribution in a Fluid at Rest	2/1
-----	--	-----

V

	2.2 The Hydrostatic Paradox	2/7
	2.3 Absolute and Gage Pressure	2/9
	2.4 Manometers	2/9
	2.5 Hydrostatic Forces on Plane Surfaces	2/13
	2.6 Center of Pressure for Plane Surfaces	2/16
	2.7 Hydrostatic Forces on Curved Surfaces	2/17
	2.8 Buoyancy	2/22
	2.9 Stability of Immersed and Floating Bodies	2/25
3.	KINEMATICS OF FLOW $(3/1 - 3/20)$	
	3.1 Introduction	3/1
	3.2 Material or Substantial Derivative	3/3
	3.3 The System and Control Volume Concepts	3/6
	3.4 Reynolds Transport Theorem	3/8
	3.5 Pathlines, Streamlines and Streaklines	3/10
	3.6 Rotation, Vorticity and Circulation	3/13
	3.7 One-, Two- or Three-Dimensional Flow	3/19
4.	CONSERVATION OF MASS (4/1 – 4/10)	
	4.1 The Differential Continuity Equation	4/1
	4.2 The Integrated Continuity Equation	4/5
5.	BASIC CONCEPTS OF FLUID DYNAMICS (5/1 – 5/1	0)
5.		
	5.1 Introduction	5/1
	5.2 Definition and Notation of Stress	5/2
	5.3 Problem Solving in Fluid Dynamics	5/6
	5.4 Similarity and Modelling	5/7
6.	CONSERVATION OF MOMENTUM (6/1 – 6/38)	
	6.1 The Linear Momentum Balance	6/1
	6.2 Application of the Linear Momentum Balance	6/3
	6.2.1 Force on a Nozzle	6/3

	6.2.2 Force on a Pipe Bend	6/5
	6.2.3 Force Exerted by a Jet on a Moving Blade	6/8
	6.2.4 Momentum Balance in Rocket Expulsion	6/10
6.3	Generalization of the Linear Momentum Balance	6/14
6.4	An Alternative Derivation of the Differential Equation	6/18
	of Momentum	
6.5	Navier-Stokes Equations	6/22
6.6	Fluid Statics Revisited – Uniform Linear Acceleration	6/25
6.7	The Angular Momentum Balance	6/28
6.8	Dimensionless Groups	6/33
	Flow Problems and Their Solution	6/35

7. UNIDIRECTIONAL LAMINAR VISCOUS FLOW (7/1 - 7/54)

7.1 Introduction	7/1
7.2 Pressure-Driven Flow Between Two Flat Plates	7/2
7.3 Pressure-Driven Flow in a Tube	7/10
7.4 The Direct Differential Momentum Balance Versus	
the Simplification of the Navier-Stokes Equation	7/17
7.5 Drag Flow Between Parallel Plates	7/18
7.6 Combined Pressure and Drag Flow Between Parallel Plates	7/20
7.7 Pressure-Driven Flow in an Annulus	7/21
7.8 Flow a Falling Liquid Film	7./23
7.9 Pressure-Driven Flow of Two Immiscible Fluids Between	
Two Parallel Plates	7/25
7.10 Tangential Drag Flow in an Annulus	7/28
7.11 Shape of Liquid Surface in a Rotating Vessel	7/30
7.12 Radial Flow Between Concentric Spheres	7/33
7.13 Some Pressure- and Gravity-Driven Flows	7/35
7.14 Diameter of a Free Liquid Jet	7/38
7.15 Flow Near a Plate Suddenly Set in Motion	7/41
7.16 Unsteady Flow Between Parallel Plates	7/44
7.17 The Usual Types of Boundary Conditions	7/47
7.18 Some Numerical Examples	7/49

8. LOW REYNOLDS NUMBER FLOW (8/1 - 8/42)

8.1 Introduction

8/1

	8.3 The S	eze Film Flow Slider Bearing Problem	8/5 8/8
		Viscous Flow Around a Sphere Through Porous Media	8/13 8/26
9.	LAMINA	R BOUNDARY LAYERS $(9/1 - 9/40)$	*
	9.1 Intr	coduction	9/1
	9.2 Boi	undary Layer on a Flat Plate	9/9
		ninar Entry Flow	9/19
		ninar Jets	9/21
	9.5 Fur	ther Comments on Similarity Solutions	9/30
	9.6 The	e Integral Momentum Approximation	9/31
	9.7 Fur	ther Remarks on Laminar Boundary Layer Flow	9/36
10.	TURBUI	LENT FLOW $(10/1 - 10/74)$	
	10.1 Int	roduction	10/1
		actuations, Eddies and Time-Averaging	10/9
	10.3 Th	e Time-Averaged Conservation Equations for an	
		compressible Fluid	10/16
	10.4 Re	ynolds Stresses and Eddy Viscosity	10/19
		oblem Solving in Turbulent Flow	10/22
	10.6 Tu	rbulent Flow in a Tube. The Law of the Wall	10/27
		rbulent Boundary Layer on a Flat Plate	10/37
	10.8 En	try Length for Turbulent Pipe Flow	10/46
	10.9 Tu	rbulent Jets, Wakes an Mixing Zones	10/48
	10	.9.1 Axisymmetric Turbulent Jet	10/49
	10	.9.2 Two-Dimensional Wakes	10/53
	10.10 Sta	atistical Theories of Turbulence	10/58
11.	INVISCI	ID INCOMPRESSIBLE FLOW (11/1 – 11/50)	
	11.1 In	troduction	11/1
		vo-Dimensional Potential Flows	11/5
		mple Potential Flows	11/11
		ombination of Simple Flows	11/20

11.5	Potential Flow Around a Cylinder	11/26
11.6	Potential Flow Around a Cylinder with Circulation	11/30
11.7	Potential Flow Around a Sphere	11/33
11.8	Complex Variables and Conformal Mapping Methods for	
	Potential Flow Problems	11/34
11.9	Some Worked Out Examples	11/39

12. LIFT AND DRAG (12/1 – 12/34)

12.1	Introduction	12/1
12.2	The Momentum Equation Along a Streamline Outside	
	the Boundary Layer	12/1
12.3	Pressure Distribution Around an Airfoil	12/5
12.4	Friction and Form Drag	12/6
12.5	Vortex Shedding from a Cylinder in Cross-Flow	12/18
12.6	Apparent or Virtual Mass of Accelerating Bodies	12/20
	Lift of Airfoils	12/27

13. CONSERVATION OF ENERGY (13/1 - 13/26)

13.1	The Total Energy Equation	13/1
	The Mechanical Energy Equation	13/5
13.3	The Thermal Energy Equation	13/7
13.4	A Simplified Derivation of the Thermal Energy	
	Equation for an Incompressible Fluid	13/11
13.5	Problem Solving in Non-isothermal Newtonian Flow	13/16
13.6	The Dimensionless Groups of Heat Transfer	13/21

14. THE BERNOULLI EQUATION FOR DUCT FLOWS (14/1 - 14/42)

14.1	Introduction	14/1
14.2	Derivation of the Bernoulli Equation	14/2
14.3	Frictional Losses in Tubes	14/4
14.4	Problem Solving with the Help of the Moody Friction Chart	14/8
14.5	Fitting Losses	14/17
14.6	The Bernoulli Equation for a Pipeline With a Pump	
	(or Turbine)	14/21

14.7 Some Comments Regarding the Application of the	
Bernoulli Equation	14/26
14.8 Multiple-Pipe System	14/28
14.9 The Bernoulli Equation for Gases	14/31
14.10 Torricelli's Equation for Tank Draining	14/32
14.11 The Bernoulli Equation for Unsteady Flows	14/34
14.12 Pressures Lower than the Vapor Pressure of Liquids	14/36
14.13 Optimal Pipe Diameter	14/38
14.14 Further Comments on Friction Factors and Loss Coefficients	14/40

15. COMPRESSIBLE FLOWS (15/1 - 15/58)

15.1	Introduction	15/1
15.2	Speed of Sound	15/2
15.3	Compressibility and Mach Number	15/8
15.4	One-Dimensional Frictionless Flow Through a Duct	
	With Varying Cross-Section	15/10
15.5	The Bernoulli Equation for Isentropic Gas Flow	15/13
15.6	Mach Number Relations for Isentropic Flow	15/15
15.7	Mass Flow Rate	15/20
15.8	Operation of a Converging-Diverging Nozzle	15/23
15.9	Normal Shock Waves	15/29
15.1	0 Compressible Pipe Flow with Friction	15/34
15.1	1 Oblique Shocks, Expansion Waves and the Sonic Boom	15/42
	2 Effect of Compressibility on Drag	15/48
15.1	3 Pressure Waves in Liquids – The Waterhamer	15/50
15.1	4 Concluding Remarks	15/53

16. OPEN-CHANNEL FLOW (16/1 – 16/34)

16.1	Introduction	16/1
16.2	Flow Configuration and Classification	16/2
16.3	Laminar Flow Over an Inclined Surface	16/4
16.4	Friction Loss in Uniform Flow: The Chezy and	
	Manning Formulas	16/4
16.5	Hydraulically Optimal Cross Sections	16/9
16.6	Speed of Gravity Waves and Froude Number	16/11
	Frictionless Flow Over an Obstacle	16/13

16.8	Hydraulic Jump	16/22
16.9	Lake and Ocean Currents	16/28

17. MAGNETOHYDRODYNAMICS (17/1-17/16)

17.1	Introduction	17/1
17.2	Conservation of Mass and Momentum	17/2
17.3	Hydromagnetic Pressure-Driven Flow Between	
	Two Flat Plates	17/5
17.4	Hydromagnetic Laminar Boundary Layer Flow	17/10
17.5	Conservation of Energ	17/15
	Further Comments on MHD	17/15

18. MEASUREMENTS IN FLUID MECHANICS (18/1 – 18/24)

18.1	Introduction	18/1
18.2	Measurement of Viscosity	18/1
18.3	Measurement of Pressure	18/2
18.4	Measurement of Velocity	18/4
18.5	Measurement of Flow Rate	18/12
18.6	Flow Visualization	18/20

19. PUMPS AND TURBINES (19/1 – 19/38)

19.1	Introduction	19/1
19.2	Positive-Displacement Pumps	19/2
19.3	Centrifugal Pumps	19/5
19.4	Performance Characteristics of Centrifugal Pumps	19/12
19.5	Cavitation	19/17
19.6	Axial- and Mixed-Flow Pumps	19/20
19.7	Pump Selection	19/22
19.8	Compressors	19/23
19.9	Turbines	19/24
19.10	Wind Turbines	19/31

20. CONSTITUTIVE EQUATIONS (20/1 - 20/12)

20.1	Introduction	20/1
20.2	Rate of Rotation and Rate of Deformation	20/2
20.3	The Newtonian Constitutive Equation	20/6

21. NON – NEWTONIAN FLOW (21/1 – 21/54)

21.1	Introduction	21/1
21.2	Viscosity of Suspensions	21/2
21.3	Shear-Thinning Behavior of Polymers	21/8
21.4	Power-Law Fluid in Three-Dimensional Flow	21/11
21.5	Pressure-Driven Flow of a Power-Law Fluid Between	
	Two Flat Plates	21/12
21.6	Pressure-Driven Flow of a Power-Law Fluid in a Tube	21/16
21.7	Capillary Viscometer Analysis	21/20
21.8	Pressure Drop for Flow of a Power-Law Fluid Through	
	a Tapered Tube	21/26
21.9	Pressure Driven Flow of a Bingham Fluid in a Tube	21/28
21.1	0 Extensional (or Elongational) Viscosity	21/31
	1 Flow in a Sudden Contraction	21/35
21.1	2 Viscoelasticity	21/38
	3 Hele-Shaw Flow Approximation	21/50

APPENDICES

Appendix A	Vectors and Tensors	A/1-A/8
Appendix B	Finite Difference and Finite Element Methods	B/1-B/30
Appendix C	Fluid Property Data	C/1C/8
Appendix D	The Conservation Equations	D/1-D/8
Appendix E	Geometrical Relations	E/1- E/2
Appendix F	Unit Conversion Factors	F/1-F/4

Subject Index

INDEX 1-INDEX 14